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Chapter 1

Normal random variables

A random variableX is said to be normally distributed with mearand variance
o2 if its probability density function (pdf) is

1

2ro

(z — p)?
202

fx(z) =

exp {— } , —oo <z <o00. (1.1
Whenever there is no possible confusion between the random vakabiel the
real argumentz, of the pdf this is simply represented jfyx) omitting the explicit
reference to the random variahlé in the subscript. The Normal or Gaussian
distribution of X is usually represented by,

X~ N(p, %),

or also,
X ~N(z —p,0%).

The Normal or Gaussian pdf (1.1) is a bell-shaped curve that is symmetric about
the meanu and that attains its maximum value %1?—0 ~ 039 aty = pas
represented in Figure 1.1 far= 2 ando? = 1.52.

The Gaussian pd¥/(u, 0%) is completely characterized by the two parameters
u ando?, the first and second order moments, respectively, obtainable from the
pdf as

o = E[X] = /_OO zf(z)dz, (1.2)

[e.9]
o0

o = EB[(X — )] = / (2 — ) (x)da (1.3)

[e.9]



Figure 1.1: Gaussian or Normal pdf, N(.5?)

The mean, or the expected value of the variable, is the centroid of the pdf. In
this particular case of Gaussian pdf, the mean is also the point at which the pdf is
maximum. The variance? is a measure of the dispersion of the random variable
around the mean.

The fact that (1.1) is completely characterized by two parameters, the first and
second order moments of the pdf, renders its use very common in characterizing
the uncertainty in various domains of application. For example, in robotics, it is
common to use Gaussian pdf to statistically characterize sensor measurements,
robot locations, map representations.

The pdfs represented in Figure 1.2 have the same mean,2, ando? >
o3 > o2 showing that the larger the variance the greater the dispersion around the
mean.

Figure 1.2: Gaussian pdf with different variance$ & 32,03 = 22,03 = 1)



Definition 1.1 The square-root of the variance, is usually known astandard
deviation.

Given a real number, € R, the probability that the random variahlé ~
N (u, 0?) takes values less or equal is given by

PriX <a,} = / fla dx—/ \/_Uexp {—%} dz,  (1.4)

represented by the shaded area in Figure 1.3.

Figure 1.3: Probability evaluation using pdf

To evaluate the probability in (1.4) tleeror function er f (), which is related

with N (0, 1),
erf(x / exp Y ’/2 dy (1.5)
\/_
plays a key role. In fact, with a change of variables, (1.4) may be rewritten as

0.5 —erf(E=") for z,<p
Pri{X <uz,} =
0.5 +erf(*™*) for x,>p

stating the importance of the error function, whose values for varicare dis-
played in Table 1.1

In various aspects of robotics, in particular when dealing with uncertainty in
mobile robot localization, it is common the evaluation of the probability that a



X erf x X erf X X erf x X erf x

0.05 0.01994 0.80 0.28814 1.55 0.43943 2.30 0.48928
0.10 0.03983 0.85 0.30234 1.60 0.44520 2.35 0.49061
0.15 0.05962 0.90 0.31594 1.65 0.45053 2.40 0.49180
0.20 0.07926 0.95 0.32894 1.70 0.45543 2.45 0.49286
0.25 0.09871 1.00 0.34134 1.75 0.45994 2.50 0.49379
0.30 0.11791 1.05 0.35314 1.80 0.46407 2.55 0.49461
0.35 0.13683 1.10 0.36433 1.85 0.46784 2.60 0.49534
0.40 0.15542 1.15 0.37493 1.90 0.47128 2.65 0.49597
0.45 0.17365 1.20 0.38493 1.95 0.47441 2.70 0.49653
0.50 0.19146 1.25 0.39435 2.00 0.47726 2.75 0.49702
0.55 0.20884 1.30 0.40320 2.05 0.47982 2.80 0.49744
0.60 0.22575 1.35 0.41149 2.10 0.48214 2.85 0.49781
0.65 0.24215 1.40 0.41924 2.15 0.48422 2.90 0.49813
0.70 0.25804 1.45 0.42647 2.20 0.48610 2.95 0.49841
0.75 0.27337 1.50 0.43319 2.25 0.48778 3.00 0.49865

Table 1.1: erf - Error function

random variablé” (more generally a random vector representing the robot loca-
tion) lies in an interval around the mean valueThis interval is usually defined
in terms of the standard deviation, or its multiples.
Using the error function, (1.5),the probability that the random variablees
in an interval whose width is related with the standard deviation, is

Pr{|X —p| <o} = 2erf(1)=0.68268 (1.6)
Pr{|X —p| <20} = 2.erf(2)=0.95452 (1.7)
Pr{|X — u| <30} = 2.erf(3)=09973 (1.8)

In other words, the probability that a Gaussian random variable lies in the in-
terval [n — 30, 1+ 30] is equal to 0.9973. Figure 1.4 represents the situation
(1.6)corresponding to the probability &f lying in the intervally — o, u+ o).

Another useful evaluation is the locus of values of the random varidble
where the pdf is greater or equal a given pre-specified valye.e.,

1 _ 2 _ 2
ey O {— <x20é‘) } > K, (x%f) <K (1.9)



Figure 1.4: Probability of X taking values in the intenjal— o, u + o], u =
2,0=15

with K = —In(v/270 K;). This locus is the line segment
w— VK <z<pu+ VK
as represented in Figure 1.5.

f(x)

Figure 1.5: Locus of x where the pdf is greater or equal than



Chapter 2

Normal random vectors

A random vectorX = [X, X, ... X,]T € R"is Gaussian if its pdf is

fx(z) = W exp {—%(x —mx)" Sz - mx)} (2.1)

where
e mx = E(X) is the mean vector of the random vecfor
e Xx = E[(X —mx)(X —mx)"] is the covariance matrix,
e n = dimX is the dimension of the random vector,

also represented as
X ~ N(mx, Ex)

In (2.1), it is assumed that is a vector of dimensiom and that:—! exists. If
Y. is simply non-negative definite, then one defines a Gaussian vector through the
characteristic function, [2].

The mean vectat x is the collection of the mean values of each of the random
variablesX;,

X1 mx,
Xo mx,
Xn an



The covariance matrix is symmetric with elements,

Sx = k=
E(Xl—mX1)2 E(Xl—mxl)(Xg—mXQ) E(Xl—mxl)(X"—an)
E(Xg*’lﬂ)@)(lele) E(XQ*TYLXQ)Q E(XQ*TI’L)Q)(anan)
E(X, —mx, (X1 —mx,) E(X, —mx,)?

The diagonal elements &f are the variance of the random variablésand the
generic element;; = E(X; —my,)(X; — mx;) represents the covariance of the
two random variables; and X ;.

Similarly to the scalar case, the pdf of a Gaussian random vector is completely
characterized by its first and second moments, the mean vector and the covariance
matrix, respectively. This yields interesting properties, some of which are listed
in Chapter 3.

When studying the localization of autonomous robots, the random vé&ctor
plays the role of the robot’s location. Depending on the robot characteristics and
on the operating environment, the location may be expressed as:

e atwo-dimensional vector with the position in a 2D environment,

e athree-dimensional vector (2d-position and orientation) representing a mo-
bile robot’s location in an horizontal environment,

¢ a six-dimensional vector (3 positions and 3 orientations) in an underwater
vehicle

When characterizing a 2D-laser scanner in a statistical framework, each range
measurement is associated with a given pan angle corresponding to the scanning
mechanism. Therefore the pair (distance, angle) may be considered as a random
vector whose statistical characterization depends on the physical principle of the
sensor device.

The above examples refer quantities, (e.g., robot position, sensor measure-
ments) that are not deterministic. To account for the associated uncertainties, we
consider them as random vectors. Moreover, we know how to deal with Gaussian
random vectors that show a number of nice properties; this (but not only) pushes
us to consider these random variables as been governed by a Gaussian distribution.

In many cases, we have to deal with low dimension Gaussian random vec-
tors (second or third dimension), and therefore it is useful that we particularize



the n-dimensional general case to second order and present and illustrate some
properties.

The following section particularizes some results for a second order Gaussian
pdf.

2.1 Particularization for second order

In the first two above referred cases, the Gaussian random vector is of order two
or three. In this section we illustrate the case when n=2.

Let
_ X 2
o [¥] e
be a second-order Gaussian random vector, with mean,
_ X | mx
g e[ X] =[] 22
and covariance matrix,
no | ox oy } (2.3)
oxy 0'}2/ )

wherec% andc? are the variances of the random variahlesndY andoxy is
the covariance oK andY’, defined below.

Definition 2.1 The covariancer xy of the two random variableX andY is the
number

oxy = E[(X —mx)(Y —my)] (2.4)
wheremy = E(X) andmy = E(Y).

Expanding the product (2.4), yields,

oxy = E(XY) — mXE(Y) — myE(X) + mxmy (25)
E(XY) - E(X)E(Y) (2.6)

Definition 2.2 Thecorrelation coefficientof the variablesX andY is defined as

ag
p=—" (2.8)

0x0y

9



Result 2.1 The correlation coefficient and the covariance of the variableand
Y satisfy the following inequalities ,

ol <1, loxy| < oxoy. (2.9)
Proof: [2] Consider the mean value of
E[G(X - mX) + (Y — my)]2 = GQO%( + 2GO'XY =+ 0'52/

which is a positive quadratic for any, and hence, the discriminant is negative,
ie.,
oxy — 0§<a}2/ <0

from where (2.9) results.
According to the previous definitions, the covariance matrix (2.3) is rewritten
as
Y = { o poxXIY } . (2.10)
POXOy Oy
, For this second-order case, the Gaussian pdf particularizes as, with y]”
R*,

flz) = 27r\/1deﬁ exp [—;[m—mx y —my]S z —mx y—my}T] (2.11)
— 1 ox [_ 1 ((96—mx)2 ~ 2p(x —mx)(y —my) N (y_my)2>}
2roxoy/1—p? Plaa-» 0% oxoy )

where the role played by the correlation coefficiemnd evident.

At this stage we present a set of definitions and properties that, even though
being valid for any two random variable¥, andY’, also apply to the case when
the random variables (rv) are Gaussian.

Definition 2.3 Independence
Two random variableX andY are called independent if the joint pdf(z, y)
equals the product of the pdf of each random varialfle;), f(v), i.e.,

flz,y) = f(z)f(y)

In the case of Gaussian random variables, cleArlgndY are independent
whenp = 0. This issue will be further explored later.

10



Definition 2.4 Uncorrelatedness
Two random variblesy andY are called uncorrelated if their covariance is
Zero, i.e.,
oxy — E[(X — mX)(Y — my)] = O,

which can be written in the following equivalent forms:
p=0, E(XY)=EX)E®Y).

Note that
E(X+Y)=EX)+E(Y)

but, in general E(XY) # E(X)E(Y). However, whenX andY are uncorre-
lated, E(XY) = E(X)E(Y) according to Definition 2.4.

Definition 2.5 Orhthogonality
Two random variableX andY are called orthognal if

E(XY) =0,

which is represented as
X 1lY

Property 2.1 If X andY are uncorrelated, thelX — mx L Y —my.

Property 2.2 If X andY are uncorrelated andnxy = 0 andmy = 0, then
X 1lY.

Property 2.3 If two random variablesX and Y are independent, then they are
uncorrelated, i.e.,

flz,y) = f(@)f(y) = E(XY) = E(X)E(Y)
but the converse is not, in general, true.

Proof: From the definition of mean value,
E(XY) = / / zy f(zy)dzdy
- / o (@)d / yF(y)dy = E(X)E(Y).

11



Property 2.4 If two Gaussian random variables andY are uncorrelated, they
are also independent, i.e., for Normal or Gaussian random variables,independency
is equivalent to uncorrelatedness Nf ~ NV (ux, Xx) andY ~ N (uy, Xy )

flzy) = f(@)f(y) & EXY)=EX)EY)+p=0.

Result 2.2 Variance of the sum of two random variabled.et X andY be two
random variables, jointly distributed, with meany and my and correlation
coefficientp and let

Z=X+4Y.
Then,
= [( myz)?)| = 0% + 2poxoy + 0% (2.13)

Proof: Evaluating the second term in (2.13) yields:

oy = E[(X —mx)+ (Y —my))?
E[(X —mx)?’] + 2E[(X —mx)(Y —my)] + E[(Y — my)?]

from where the result immediately holds.

Result 2.3 Variance of the sum of two uncorrelated random variables
Let X andY be two uncorrelated random variables, jointly distributed, with
meanmy andmy and let
Z =X+Y.

Then,
0y =0y + oy (2.14)

e., if two random variables are uncorrelated, then the variance of their sum
equals the sum of their variances.

We regain the case of two jointly Gaussian random varaibfeandY’, with
pdf represented by (2.11) to analyze, in the plots of Gaussian pdfs, the influence
of the correlation coefficient in the bell-shaped pdf.

Figure 2.1 represents four distinct situations with zero mean and null corre-
lation betweenX andY, i.e., p = 0, but with different values of the standard
deviationsoy andoy. Itis clear that, in all cases, the maximum of the pdf is ob-
tained for the mean value. As= 0, i.e., the random variables are uncorrelated,

12



E(X)=0, E(Y)=0, 5, =15, 5, =15, p=0

E(X)=0, E(Y)=0, 6,71, 6,71, p=0

E(X)=0, E(Y)=0, 6,=2, 6,=1.0, p=0

E(X)=0, E(Y)=0, 6,=1, 6,=2.5, p=0

f(x.y)

f(x.y)
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Figure 2.1: Second-order Gaussian pdfs, witk
1, oy =1, b)O’X = 15, oy = 1.5, C)O'X = 1, oy = 2.5, d)O’X = 2, oy =1
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the change in the standard deviatiens andoy has independent effects in each

of the components. For example, in Figure 2.1-d) the spread around the mean is
greater along the coordinate. Moreover, the locus of constant value of the pdf

is an ellipse with its axis parallel to theandy axis. This ellipse has equal axis
length, i.e, is a circumference, when both random variabtegndY have the
same standard deviatiofy = sigmay .

The examples in Figure 2.2 show the influence of the correlation coefficient
on the shape of the pdf. What happens is that the axis of the ellipse referred
before will no longer be parallel to the axisandy. The greater the correlation
coefficient, the larger the misalignment of these axis. Whenl or p = —1 the
axis of the ellipse has an anglef4 relative to ther-axis of the pdf.

2.2 Locus of constant probability

Similarly to what was considered for a Gaussian random variable, it is also useful
for a variety of applications and for a second order Gaussian random vector, to
evaluate the locugr, y) for which the pdf is greater or equal a specified constant,
K, le.,

1 1
{(x,y) oo O [—§[$ —myxyy—my]S [z —mx y— my}T} > K,
(2.15)
which is equivalent to

1| T—m
{@emmey—miz [T <k} @
with
K = —2In(2nK1VdetY).

Figures 2.3 and 2.4 represent all the pdirsy) for which the pdf is less or
equal a given specified constait. The locus of constant value is an ellipse
with the axis parallel to the: andy coordinates whep = 0, i.e., when the
random variable andY are uncorrelated. Whem+ 0 the ellipse axis are not
parallel with ther andy axis. The center of the ellipse coincides in all cases with
(mx, my).

The locus in (2.16) is the border and the inner points of an ellipse, centered in
(mx, my). The length of the ellipses axis and the angle they do with thezaxis
andy are a function of the constaht, of the eigenvalues of the covariance matrix

14



E(X)=1, E(Y)=2, 6,15, 6,=1.5, p=-0.8
(X) (Y)=2, 0, LV p E()=L, E(Y)=2, 6,715, 0,15, p=-0.4
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E()=1, E(Y)=2, 0,715, 6,72, p=0.2 E(O=L, E(Y)=2, 0,715, 0,2, p=-0.2
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Y. and of the correlation coefficient. We will demonstrate this statement in two
different steps. We show that:

1. Case 1-if X in (2.16) is a diagonal matrix, which happens when 0, i.e.,
X andY are uncorrelated, the ellipse axis are parallel to the frame axis.

2. Case 2-if X in (2.16) is non-diagonal, i.e; # 0, the ellipse axis are not
parallel to the frame axis.

In both cases, the length of the ellipse axis is related with the eigenvalues of
the covariance matriX in (2.3) given by:

1
A= 5[a§+a%+J(o&—a@waiaapﬂ, (217)
N = 1 2 2 2 _ 52)2 L 402 02 p2 2.18
2 5 |Ox T oy (0% — oy)? + doxoyp*| . (2.18)

Case 1 - Diagonal covariance matrix
Whenp = 0, i.e., the variablesX andY are uncorrelated, the covariance
matrix is diagonal,
¥ = {"i 0 } (2.19)
0 o} '
and the eigenvalues particularizeXp= ¢% and\, = o%. In this particular case,
illustrated in Figure 2.5, the locus (2.16) may be written as

{(x7y) i _OTX)2 L _UTY)Q < K} (2.20)
or also, , )
{(m,y) : (@ }_(:;;(X) + y ;{Z;;/Y) < 1}. (2.21)

Figure 2.5 represents the ellipse that is the border of the locus in (2.21) having:
e x-axis with lengtr2o x v K
e y-axis with lengtheoy VK.

Case 2 - Non-diagonal covariance matrix
When the covariance matriX in (2.3) is non-diagonal, the ellipse that bor-
ders the locus (2.16) has center(iny, my ) but its axis are not aligned with the

18



\sigma_X \sqrt{K}
1.

Figure 2.5: Locus of constant pdf: ellipse with axis parallel to the frame axis

coordinate frame. In the sequel we evaluate the angle between the ellipse axis and
those of the coordinate frame. With no loss of generality we will consider that
mx = my = 0, i.e., the ellipse is centered in the coordinated frame. Therefore,
the locus under analysis is given by

{(w) o gs { ’ } < K} (2.22)

where is the matrix in (2.3). As it is a symmetric matrix, the eigenvectors
corresponding to distinct eigenvalues are orthogonal. When

Ox # Oy

the eigenvalues (2.17) and (2.18) are distinct, the corresponding eigenvectors are
orthogonal and thereforg has simple structure which means that there exists a
non-singular and unitary coordinate transformafibsuch that

S=TDT! (2.23)

where
T = [1}1 | ’Ug}, D:dzag()\l, )\2)

andvy, vy are the unit-norm eigenvectors Bfassociated with; and\,. Replac-
ing (2.23) in (2.22) yields
{(gg, y): [z y|TD T { ;3 ] < K} . (2.24)

19



Denoting

{ b } =7 [ v } (2.25)
% )
and given thaf™” = T, it is immediate that (2.24) can be expressed as
AN O ! Wy
{(wwa) Dlwr wy) [ 0 Ao } { Wy } < K} (2.26)

that corresponds, in the new coordinate system defined by thevgxasnd w,,

to the locus bordered by an ellipse aligned with those axis. Giventhatdv,

are unit-norm orthogonal vectors, the coordinate transformation defined by (2.25)
corresponds to a rotation of the coordinate systeny), around its origin by an
angle

1 _1( 2poxoy T T
o = §tan (ﬂ) s _Z S a < Z, Ox 7é Oy. (227)

Evaluating (2.26), yields,

2 2

wy Wy
: A 2.28
{(w“W) n K } (2.28)

that corresponds to an ellipse having
e wi-axis with length2/ K \;
e wy-axis with length2/ K A,

as represented in Figure 2.6.

20
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Chapter 3

Properties

Let X andY be two jointly distributed Gaussian random vectors, of dimension
andm, respectively, i.e,

X ~ N(mx,zx) Y ~ N(my,zy)
andXx a square matrix of dimensionandyy a square matrix of dimension.

Result 3.1 The conditional pdf oK andY is given by

R U R s VNS I
faly) = = exp | =5 = m)"S = m)| ~ N (m D) (1)
with
m = E[X]Y]=mx + Sxy 57 (Y —my) (3.2)
Y o= Ty —Sxy Iy X (3.3)

The previous result states that, wh&nandY” are jointly Gaussianf(z|y) is
also Gaussian with mean and covariance matrix given by (3.1) and (3.3), respec-
tively.

Result3.2Let X € R", Y € R™ andZ € R" be jointly distributed Gaussian
random vectors. I and Z are independent, then

E[X|Y,Z]) = E[X|Y] + E[X|Z] — mx (3.4)

whereE[X] = mx.

22



Result3.3Let X € R", Y € R™ andZ € R" be jointly distributed Gaussian
random vectors. 1" and Z are not necessarily independent, then

E[X|Y, Z) = E[X|Y, Z] (3.5)

where ~
Z =7 —E[Z|Y]

yildeing 3
E[X|Y,Z] = EX|Y] + E[X|Z] — mx

23



Chapter 4

Covariance matrices and error
ellipsoid

Let X be a n-dimensional Gaussian random vector, with
X ~ N(mx, Zx)

and consider a constant; € R. The locus for which the pdf(z) is greater or
equal a specified constaht,i.e.,

1 1 -
{fE : WGXP —5[1’ — mx]szl[ﬂf — mx]:| > Kl} (41)
which is equivalent to
{z: [z —mx]"S{ [z —mx] < K} (4.2)

with K = —21In((27)"/2K,|%| 1/2) is an n-dimensional ellipsoid centered at the
meanmy and whose axis are only aligned with the cartesian frame if the covari-
ance matriX_ is diagonal. The ellipsoid defined by (4.2) is the region of minimum
volume that contains a given probability mass under the Gaussian assumption.
When in (4.2) rather than having an inequality there is an equality, (4.2), i.e.,

{z: [z —mx]"S¢ [z —my] = K}
this locus may be interpreted as the contours of equal probability.
Definition 4.1 Mahalanobis distanceThe scalar quantity
[z —mx]" X e —mx] = K (4.3)

is known as the Mahalanobis distance of the vecttw the meann .
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The Mahalanobis distance, is a normalized distance where normalization is
achieved through the covariance matrix. The surfaces on whiichconstant are
ellipsoids that are centered about the meag, and whose semi-axis argK
times the eigenvalues afy, as seen before. In the special case where the ran-
dom variables that are the componentsXofire uncorrelated and with the same
variance, i.e., the covariance matbixis a diagonal matrix with all its diagonal
elements equal, these surfaces are spheres, and the Mahalanobis distance becomes
equivalent to the Euclidean distance.

Figure 4.1: Contours of equal Mahalanobis and Euclidean distance around
(mx, my ) for a second order Gaussian random vector

Figure 4.1 represents the contours of equal Mahalanobis and Euclidean dis-
tance aroundmx,my) for a second order Gaussian random vector. In oher
words, any pointz, y) in the ellipse is at the same Mahalanobis distance to the
center of the ellipses. Also, any poifi, y) in the circumference is at the same
Euclidean distance to the center. This plot enhances the fact that the Mahalanobis
distance is weighted by the covariance matrix.

For decision making purposes (e.g., the field-of-view, a validation gate), and
givenmy andX x, it is necessary to determine the probability that a given vector
will lie within, say, the 90% confidence ellipse or ellipsoid given by (4.3). For
a given K, the relationship betweeA  and the probability of lying within the
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ellipsoid specified byx is, [3],

n=1; Pr{x inside the ellipsoid} = —\/% + 2er f(VK)
n =2; Pr{xinside the ellipsoid} =1 — e /2
n=3; Pr{x inside the ellipsoid} = _\/LTW + 2erf(VEK) — \/g\/fe_K/Q
(4.4)
wheren is the dimension of the random vector. Numeric values of the above
expression forn, = 2 are presented in the following table

Probability K
50% 1.386
60% 1.832
70% 2.408
80% 3.219
90% 4.605

For a givenk the ellispoid axis are fixed. The probability that a given value of
the random vectok lies within the ellipsoid centered in the mean value, increases
with the increase of’.

This problem can be stated the other way around. In the case where we specify
a fixed probability value, the question is the valuefofthat yields an ellipsoid
satisfying that probability. To answer the question the statistick” dfas to be
analyzed.

The scalar random variable (4.3) has a known random distribution, as stated
in the following result.

Result 4.1 Given then-dimensional Gaussian random vectsr with meanm x
and covariance matriX x, the scalar random variabl& defined by the quadratic
form

v —mx]"S e — mx] = K (4.5)

has a chi-square distribution with degrees of freedom.
Proof: see, p.e., in [1].

The pdf of K in (4.5), i.e., the chi-square density withdegrees of freedom
is, (see, p.e., [1])

f(k) == k= exp_g
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where the gamma function satisfies,
I'(z)=+vm, T(1)=1 T'(n+1)=TC(n).

The probability that the scalar random varial#é,in (4.5) is less or equal a
given constanty’

Pr{K < X;} = Pr{[z — mx]"Y 'z —mx] < X;Q;} =p

is given in the following table where is the number of degrees of freedom and
the sub-indice in X,% represents the corresponding probability under evaluation.

X(2)‘995 X(2).99 X(2).975 Xags X%.90 X(2>.75 X%ﬁo X%.zs X(2)‘10 X(2).05
7.88 6.63 5.02 384 271 1.32 0.455 0.102 0.0158 0.0039

106 921 738 599 461 277 139 0575 0.211 0.103
128 113 935 781 625 411 237 121 0584 0.352
149 133 111 949 778 539 336 192 1.06 0.711

A WNPRS

From this table we can conclude, for example, that for a third-order Gaussian
random vectorp = 3,

Pr{K <6.25} = Pr{lz — mx]"Y 'z —mx] <6.25} =0.9

Example 4.1 Mobile robot localization and the error ellipsoid

This example illustrates the use of the error ellipses and ellipsoids in a partic-
ular application, the localization of a mobile robot operating in a given environ-
ment.

Consider a mobile platform, moving in an environment andllet R? be the
position of the platform relative to a world framé&. has two components,

X
p- [ > ] _
The exact value aP is not known and we have to use any particular localization
algorithm to evaluateP. The most common algorithms combine internal and
external sensor measurements to yield an estimated valbe of
The uncertainty associated with all the quantities involved in this procedure,
namely vehicle model, sensor measurements, environment map representation,

leads to considef” as a random vector. Gaussianity is assumed for simplicity.
Therefore, the localization algorithm provides an estimated valui,afenoted
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as P, which is the mean value of the Gaussian pdf, and the associated covariance
matrix, i.e., )
P ~ N(P, Ep)

At each time step of the algorithm we do not know the exact valig btit we
have an estimated valu&’ and a measure of the uncertainty of this estimate,
given by> . The evident question is the following: "Where is the robot?”, i.e.,
"What is the exact value aP”? It is not possible to give a direct answer to this
question, but rather a probabilistic one. We may answer, for example: "Given
and X, with 90% of probability, the robot is located in an ellipse centeredin
and whose border is defined according to the Mahalanobis distance”. In this case
the value ofK in (4.5) will be K = 4.61.

Someone may say that, for the involved application, a probabili§0Hf is
small and ask to have an answer with an higher probability, for exaragie.
The answer will be similar but, in this case, the error ellipse, will be defined for
K =9.21, i.e.,the ellipse will be larger than the previous one.

28



Bibliography

[1] Yaakov Bar-Shalom, X. Rong Li, Thiagalingam Kirubarajan, "Estimation
with Applications to Tracking and Navigation,” John Wiley & Sons, 2001.

[2] A. Papoulis, "Probability, Random Variables and Stochastic Processes,”
McGraw-Hill, 1965.

[3] Randall C. Smith, Peter Cheeseman, "On the Representation and Estima-
tion of Spatial Uncertainty,” the International Journal of Robotics Research,
Vol.5, No.4, Winter 1986.

29



